Diffusion Tensor Imaging of the Carnivora Brain: A Pilot Study

Kevin X, Nguyen DO '26¹, Cheuk C. Tang PhD², Chet C. Sherwood PhD³, Paul, R. Manger PhD⁴, and Muhammad A. Spocter PhD¹,⁴,⁵

¹Department of Anatomy, Des Moines University, Des Moines ²Department of Radiology, ICAHN School of Medicine, Mount Sinai NY ³Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC ⁴School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Republic of South Africa ⁵Department of Biomedical Sciences, Iowa State University Vet Med.

Fiber tractography is relatively novel method for reconstructing the course and location of white matter tracts in the mammalian brain. While this approach has been applied extensively in human studies, very few studies have looked at the application of this approach to the study of non-traditional animal models. Here we look to explore the use of fiber tractography to reconstruct the major commissural, association and projection fiber pathways in a range of closely related Carnivora. The null hypothesis is that fiber pathways in closely related species of carnivora have remained largely unchanged and are indicative of the constraints (architectural, developmental, or phylogenetic) that unite species within a given Order. Alternatively, deviations from this known bauplan are interpreted as species specific variation, which is directly related to the unique ecological context of each species (i.e., hunting strategies, social organization and or cognition).